
18 The Delphi Magazine Issue 31

Web Commerce With Delphi:
Live Transaction Processing
by Peter Hyde

In my previous look at Web
commerce (September 1997), I

outlined the range of options
already being used for handling
transactions over the Web, and
provided a working example of
what is possibly the most common
approach: validating credit card
information on the site, but han-
dling the actual transaction offline.

This approach is popular
because it is relatively inexpensive
to implement and is basically
sufficient for all scenarios where
there is going to be a manual
‘dispatch’ step in satisfying the
order anyway. That manual step
provides an opportunity for full
bank authorisation of the credit
card details, thus eliminating
stolen, over-limit or spurious but
numerically valid credit cards.

However, for a growing number
of cases, a real-time, live authorisa-
tion and/or funds transfer step is
required, either because the
‘product’ (such as software or
information) is going to be deliv-
ered automatically and immedi-
ately from the site, or because the
site vendor wants to eliminate the
manual processing step.

Services that support such
authorisations include ICVerify
(www.icverify.com) and Cyber-
cash (www.cybercash.com) in the
US, and a range of bank-specific
services elsewhere. For some
countries, the service offerings
are, as yet, so limited or restrictive
that it may be easier to open a US
merchant bank account and use
one of the US-based services, in
spite of the additional tax and
bookkeeping complications which
might be involved. An example of a
service offering Merchant card
accounts can be found at
http://secure.href.com/merchant/.

Needless to say, the picture is
changing. From the viewpoint of a
software developer, this means

that we should work hard to isolate
the different steps involved in car-
rying out an online transaction so
that, if the back-end service
changes, the rest of our application
is left relatively unchanged.

Coping With Service Delays
Perhaps the most important
aspect to consider when
implementing support for online
transactions is that ‘real time’ does
not necessarily imply ‘instant.’ In
any case where a third-party
server or service must be involved,
allowance must be made for the
variation in service availability and
throughput which can ensue.

For example, ICVerify, while
inexpensive and robust, depends
(at the time of writing) on a 1200-
baud dial-up connection being
made to their free phone number.
This can take 15-30 seconds to
complete, even assuming that the
programs making and receiving
the calls haven’t got a queue of
transactions to deal with. Even
services which handle transac-
tions via TCP/IP, like Cybercash,
are subject to similar response
times. Therefore, both the site’s

processing software and user
interface should be based around
an asynchronous model, effec-
tively placing the surfer in a hold-
ing queue until the transaction is
either accepted/rejected by the
service or abandoned by the
surfer.

Another desirable feature is to
isolate the transaction processing
and queue management from the
dynamic Web application. This
offers various advantages. Firstly,
one service application can be
used to handle transactions for a
number of sites on the server. If
traffic and server load increase,
the transaction handler can be
moved easily to a separate
machine or suite of machines,
communicating with the server via
either a shared directory or more
elaborate mechanisms such as
DCOM. There is also no need to
spawn threads in the Web applica-
tion to manage the queuing and
authorisation process.

Lastly, if the authorisation serv-
ice used changes, only the stand-
alone processor application needs

Asynchronous Processing of Online Transactions

Time
BrowserBrowser WWeb Applicationeb Application Processor ApplicationProcessor Application

Surfer submits
card details

Queues validation
request, sends

"now processing"
message with

"check status" link

Gets next transaction
(if any)

Processes via
external service

Once done, sets
result status flag

Surfer clicks
"check status"

Checks status flag,
sends appropriate

response if still pending

Surfer clicks
"check status" Checks status flag,

sends result and, if "ok",
includes order completion

information,
download link etc."Surfer downloads

software
(or whatever)

➤ Figure 1

March 1998 The Delphi Magazine 19

to change: the site software should
not be affected.

Web App Requirements
Figure 1 illustrates this kind of
asynchronous transaction proc-
essing system. By offloading the
transaction processing to the Proc-
essor Application, we’ve limited
the Web application’s automation
requirements to four.

The first is to numerically vali-
date the card number and expiry
date (as done in the example appli-
cation in my last article: there’s no
point making the surfer wait 30 sec-
onds while you call the processing
service to find out that the card
number has been mistyped). The
second is to queue a ‘process this
transaction’ request and tell the
surfer what is happening.

The third requirement is to
respond sensibly to ‘check proc-
essing status’ requests from the
surfer while the request is in the
queue or still being processed. By
using a META REFRESH tag in the
HTML you can have the browser
automatically ‘poll’ your Web
application every few seconds if
you like.

Lastly, when the transaction
processing has finished, and has
set a status flag which records the
result, the app must use that flag to
decide what page to display when
the surfer next checks the status.
Usually it would be an ‘Order

TCustomTTCustomTransactionQueuerransactionQueuer

TCustomFileTTCustomFileTransactionQueuerransactionQueuer

TSimpleFileTTSimpleFileTransactionQueuerransactionQueuer

TSimpleFileTTSimpleFileTransactionProcessorransactionProcessor

TICVTICVerifyTerifyTransactionQueuerransactionQueuer

Components in the WebTrans.pas Unit

➤ Figure 2

➤ Listing 1

accepted’ page, which may contain
links to download the product or
information ordered.

In no cases need the Web appli-
cation hang around waiting for
things to happen, it can immedi-
ately respond to surfer requests
with either a ‘queued’, ‘rejected’ or
‘completed’ page.

Queuing Components
We’ll start our design with TCustom-
TransactionQueuer, an abstract
class which defines handling
which should apply regardless of
what Web automation or transac-
tion processing solution you
intend to use.

Its properties and data types are
shown in Listing 1 and the full
component is in the WebTrans.pas
file on this Issue’s disk. Figure 2

shows an outline of the component
hierarchy for the WebTrans unit.

The TTransactionData type
encapsulates all the information
which might be required to carry
out a particular transaction. Other
properties, such as QueueByFile,
control the way the component
itself behaves in the current appli-
cation. A particular implementa-
tion derived from this component
will use those fields or properties
which are important for a given
transaction-processing service.

TCustomTransactionQueuer does
not actually queue anything any-
where, it leaves that work to
derived components so that they
can manage their own specific
implementations.

type
TTransactionStatus = (tsInvalid, tsQueue, tsCancel,
tsProcessing, tsTimeOut, tsAccept, tsReject);

TTransactionData = record
// a unique identifier, eg surfer name, session ID:
TransactionID: string;
{ May be used, eg if doing authorisations (not confirmed
sales) with settlement happening LATER after shipping
is confirmed: }

TransactionType: string;
// only needed if back end is multi-merchant enabled:
MerchantID: string;
// as above, assuming the back end requires a password:
MerchantPassword: string;
// available with some services, appears on form:
Comment: string;
Clerk: string; // ditto
CardNumber: string; // no spaces or punctuation
ExpiryMonth: string; // 01..12
ExpiryYear: string; // 98, 99, 2000, 2001...
// total amount to be authorised or transferred:
TransactionAmount: string;
{ Time when transaction was first queued, set by Queue
not caller: }

Age: TDatetime;
// set by Queuer or returned from Processor:
TransactionStatus: TTransactionStatus;

end;
// Abstract class which implements the most common logic:
TCustomTransactionQueuer = class(TComponent)
private
fTransactionData: TTransactionData;
// File/Memory require implementation in derived classes:
fQueueByFile: Boolean;

protected
// if encryption is implemented:
fEncryptionPassword: string;
function LoadTransaction: Boolean;
{ derived classes must implement these methods to
support File, Memory or both. The functions should
return False if the Transaction is not present.
The 'Save' procedures should recognise a tsCancel
status and handle it accordingly, in most cases just
by deleting the entry. }

procedure SaveTransactionToFile; virtual; abstract;
function LoadTransactionFromFile: Boolean;

virtual; abstract;
procedure DeleteTransactionFromFile; virtual; abstract;
procedure SaveTransactionToMemory; virtual; abstract;
function LoadTransactionFromMemory: Boolean;
virtual; abstract;

procedure DeleteTransactionFromMemory;
virtual; abstract;

public
procedure QueueTransaction;
procedure CheckTransaction;
procedure CancelTransaction;
procedure DeleteTransaction;
// only publically used for Processor components:
procedure SaveTransaction;
function GetStatusMessage: String; virtual;

published
property TransactionData: TTransactionData
read fTransactionData write fTransactionData;

property StatusMessage:string read GetStatusMessage;
end;

20 The Delphi Magazine Issue 31

The next layer of our onion is the
TCustomFileTransactionQueuer, a
class which adds queue-by-file
functionality to the mix. This is
also an abstract class, leaving two
methods which actually specify
how the contents of the queue file
are organised to be implemented
by a derived class.

The TSimpleFileTransaction-
Queuer is the culmination of all this,
albeit a rather simple one. It simply
stores and retrieves the most
essential information in comma-
delimited form in the appropriate
directory with a filename which
ends in .TRN.

The Queuing Components
After placing TSimpleFileTransac-
tionQueuer on our Web applica-
tion’s form, we can use it when
responding to three possible
events from the surfer: queuing,
checking and (optionally) cancel-
ling a transaction request. Listing 2
shows pseudocode for queuing a
request.

Checking a request which has
already been queued is exactly as
for queuing, except that possible
return status values (and hence
page handling) should also include
‘Processing’, ‘Accepted’ or
‘Rejected’. Note that the Check-
Transaction method just calls
QueueTransaction anyway, because
our implementation includes a
failsafe mechanism whereby, if a
transaction is lost from the queue
for any reason, the surfer’s next
check will simply re-queue it. An
ideal implementation, such as the
example application introduced
later, should be able to handle
stopping and restarting of both the
Web application and the Process-
ing application without loss of
‘state’.

Listing 3 shows the pseudocode
for cancelling a request.

The logic for assigning literals
and sending the appropriate
response page for each situation
depends on what Web develop-
ment components you are using.
However, the rest should be
entirely generic, perhaps only
varying if you switch card
processing services and find that
the new one requires an additional

with TransactionQueuer, TransactionQueuer.TransactionData do
begin
AssignTransactionDataFromFormLiterals;
// need at least TransactionID, CardNumber, ExpiryMonth,
// ExpiryYear, TransactionAmount
QueueTransaction;
SendPageBasedOnStatus(TransactionStatus); // "Queued" or "Problem"
if TransactionStatus in ([tsTimeout, tsInvalid, tsCancel, tsAccept, tsReject])
then DeleteTransaction;

end;

➤ Listing 2

with TransactionQueuer, TransactionQueuer.TransactionData do begin
TransactionID := value from literals // (eg session ID, surfer name)
CancelTransaction; // could fail if, for example, it has just
// entered "processing" mode

SendPageBasedOnStatus(TransactionStatus); // all possibilities are open
// since all possibilities are open, must clean up if necessary,
// even though a Cancel would normally delete the transaction anyway:

if TransactionStatus in ([tsTimeOut, tsInvalid, tsCancel, tsAccept, tsReject])
then DeleteTransaction; // harmless if already done

end;

➤ Listing 3

TransactionData field to be
supplied (eg MerchantID).

The TRNQUEUE.DPR project is a
non-Web demonstration of trans-
action queuing which uses this
component. Be sure to install the
components in WEBTRANS.PAS
onto your component palette
before loading it.

The Processor Application
For some services, a processor
(back end) element might not even
be necessary. For example, if you
purchase and run the standard
ICVerify program for Windows, it
will look for transaction files cre-
ated in its documented ASCII
format and then carry out the
transaction. Thus, in effect, the
processor application has already
been made for you: just use the
TICVerifyTransactionQueuer com-
ponent which you will find at the
end of the WEBTRANS.PAS unit (the
TrnQueue project has a Use ICVerify
checkbox which makes it do just
that). However, if you want to use a
local processing service, Cyber-
cash, or even ICVerify via its DLL
instead of its standalone Windows
product, you’ll very likely be
making your own processor appli-
cation to act as an interface
between your queuing mechanism
and the processing service’s API.

To make this task easy, we’ve
derived a model TSimpleFileTrans-
actionProcessor component from
our Queueing component. The extra
logic included is mainly the

GetNextTransaction function which
looks for any pending transactions
in the queue (ignoring those which
have already been processed but
not yet deleted).

A sample application which uses
the processor component is pro-
vided in TRNPROC.DPR. A TTimer
fires every five seconds to check
and, if necessary, clear the queue.
This sample project substitutes
user confirmation for the calls to a
processing service which you’d
add when you take it ‘live’. Leave it
running while you experiment with
the TrnQueue project mentioned
above, and you’ll have all the
elements of the queue/process
logic ready for testing.

A Live Web Application
If you’re in a hurry to get your live
Web commerce solution online,
I’ve revised the sample shopping
cart application from my Septem-
ber 1997 article to include transac-
tion queueing using the
TICVerifyTransactionQueuer com-
ponent. Because this application is
built with the WebHub component
framework for Delphi, you’ll need
to download a trial version of
WebHub from www.href.com.

After installing WebHub, you’ll
find its original “SHOP1”
application in the \ht\htdemos\
codedemo\shop\dpr directory.
Make sure that you can load,
compile and run this sample appli-
cation successfully with WebHub,
then, from this Issue’s disk, copy

March 1998 The Delphi Magazine 21

HTSHOP*.* into the above direc-
tory. Also copy SHOP1.TXT into
your Web server’s htdocs\
htdemo\WhubHtml\shop1 direc-
tory. Reload the HTSHOP1.DPR
application in Delphi and set the
QueueDirectory property for ICVer-
ifyTransactionQueuer to point
wherever ICVerify is expecting it to
be (we’re assuming you have
ICVerify installed, but it isn’t com-
pulsory if you’re just testing the
Web logic). Now compile and run it
as you did before, noting the new
credit card entry, checking and
queuing logic.

If you wish, you could readily
replace the ICV queuing compo-
nent with a TSimpleFileTransac-
tionQueuer component and use the
TRNPROC.DPR project to simulate
the service responses instead. The
logic at the Web application’s end
would be unchanged, just as the
TrnQueue project can switch what
queuing component it uses with a
simple runtime checkbox.

To extend or apply this sample
application, you’ll want to review
the comments in HTSHOPC.PAS. If
you plan on using ICVerify as a
processing service, pay close
attention to the comments about it
in WebTrans.pas.

Further Reading
Start by reading the Banking Terms
And Caveats box, as it covers some
of the teminology and methods
used in online banking. While this
information is based on the
approach generally used in the US,
it is likely to apply no matter where
you are.

For more information on Cyber-
cash, visit www.cybercash.com.
Currently, there is no merchant
signup fee and the per-transaction
fee is 10 cents (US), included in the
card processing fees you pay to
your bank. Some pre-rolled
WebHub code for calling a Cyber-
cash Perl script to process transac-
tions can be found at

www.href.com/scripts/
runisa.dll?TN:Detail::194

You could perhaps use the code as
a basis for a TCyberCashTransac-
tionQueuer component, with the

Perl script acting as the processor
application.

For more information on ICVer-
ify, visit www.icverify.com. Setup
costs are about $US400 for the Win-
dows version for a single
merchant, but the $US750 SDK/
partnership program is highly rec-
ommended, due to the additional
technical information and bulle-
tins. There is no per-transaction
fee with ICVerify.

Where To From Here?
What you do with the components
from here on will be tightly guided
by the implementation require-
ments of the card processing serv-
ice you use. Issues such as field
validation, which fields to use,
whether to log transactions for
later settlement and so on cannot
be explored in detail here because
we would rapidly head down a path
which is too tightly tied to one
service. As a look at the WEB-
TRANS.PAS source will reveal, even
the TICVerifyTransactionQueuer

component is only using a narrow
range of the overall ICVerify serv-
ice capabilities, and for particular
client (or multi-client) require-
ments, you may want to extend its
handling significantly.

However, with a defined, generic
transaction queuing approach,
you can play about with implemen-
tation details pretty much to your
heart’s content and your Web
applications will keep on working.

Peter Hyde is the author of the
TCompress and TCompLHA com-
ponent sets for Delphi and
C++Builder, and Development
Director of South Pacific Informa-
tion Services Ltd, which specialises
in dynamic Web site development
and automation. Peter can be
contacted at peter@spis.co.nz or
via http://www.spis.co.nz. Thanks
to Ann Lynnworth of HREF Tools
Corp for her assistance in the
preparation of this article.

Banking Terms And Caveats
Complete Sale. You carry out this kind of transaction when you know you
will ship within 24 hours (in the US it’s illegal to charge a person’s card if the
product is not shipped that day).

Book. You do this when you want to hold the customer’s funds and plan to
ship later. The customer’s funds are held for about 10 business days. You must
save the approval code in order to follow up with the next step.

Ship. You do this when the goods have shipped, meaning that the cus-
tomer funds can then be released to you.

Regardless of whether you do the above in one step (Complete Sale) or two
(Book, then Ship), you must run a settlement transaction if you want to get
your funds, at least for most US merchant account types. If you do not settle
within 10 days, you have to start all over again and see whether the customer
still has funds with which to pay you.

Note that there are a lot of different types of card processing networks. The
ICVerify product lists over 20. Each one has different protocols. If you are only
going to support a single merchant, you have a lot of flexibility in choosing
your back-end service provider, because you are just checking to be sure they
support one processor.

However, if you are more like an ISP, you need to pick someone (like ICVer-
ify) that has support for 99% of the processing networks, all encapsulated
into one transaction interface. They have done an enormous amount of work
to make that true: they have 90% of the card processing business in the US
and they have been around for over a decade, whereas some of the other
processing companies may be a little shaky as the market and technology set-
tles.

Finally, look before you leap. Financial transactions are a non-trivial issue in
any language or locale, and you should not assume you have all the informa-
tion you need on the basis of having read these articles. By all means start
from here, but do your homework too. See you on the Web!

	Coping With Service Delays
	Web App Requirements
	Queuing Components
	The Queuing Components
	The Processor Application
	A Live Web Application
	Further Reading
	Where To From Here?
	Banking Terms And Caveats

